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A B S T R A C T

This paper is a comprehensive literature review of Biased Random-Key Genetic Algorithms (BRKGA). BRKGA
is a metaheuristic that employs random-key-based chromosomes with biased, uniform, and elitist mating
strategies in a genetic algorithm framework. The review encompasses over 150 papers with a wide range
of applications, including classical combinatorial optimization problems, real-world industrial use cases, and
non-orthodox applications such as neural network hyperparameter tuning in machine learning. Scheduling is by
far the most prevalent application area in this review, followed by network design and location problems. The
most frequent hybridization method employed is local search, and new features aim to increase population
diversity. We also detail challenges and future directions for this method. Overall, this survey provides a
comprehensive overview of the BRKGA metaheuristic and its applications and highlights important areas for
future research.
1. Introduction

Genetic algorithms, first introduced by Holland (1975), have proven
to be effective for solving challenging optimization problems, ranging
from discrete and combinatorial problems to non-linear and derivative-
free optimization problems. This class of methods is a population-based
metaheuristic that uses the principles of natural selection and survival
of the fittest individuals, providing a powerful tool for searching large
solution spaces. As a result, genetic algorithms have been applied in
various domains due to their efficiency and versatility.

Biased Random-Key Genetic Algorithms (BRKGA) have become a
popular variant of genetic algorithms due to their successful applica-
tion in several optimization problems, from classical hard combinato-
rial optimization problems (Resende, Toso, Gonçalves, & Silva, 2012;
Rochman, Prasetyo, & Nugroho, 2017) to real-world problems, such
as packing (Gonçalves & Resende, 2011b), combinatorial auctions (An-
drade, Toso, Resende, & Miyazawa, 2015), scheduling (Andrade, Byers,
et al., 2017, 2019; Andrade, Silva, & Pessoa, 2019; Cunha, Pessoa,
Vellasco, Tanscheit, & Pacheco, 2018; Pessoa & Andrade, 2018), ve-
hicle routing (Andrade, Miyazawa, & Resende, 2013; Lopes, Andrade,
Queiroz, Resende, & Miyazawa, 2016), clustering (Andrade, Resende,
Karloff, & Miyazawa, 2014), complex network design (Andrade, Pessoa,
& Stawiarski, 2022; Andrade, Resende, et al., 2015), placement of vir-
tual machines in data centers (Stefanello, Aggarwal, Buriol, & Resende,
2019), and machine learning (Caserta & Reiners, 2016; Paliwal et al.,
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2020), to cite only a few. BRKGA was formally introduced by Gonçalves
and Resende (2011a), although its elements have appeared before
in Beirão (1997), Buriol, Resende, Ribeiro, and Thorup (2005), Eric-
sson, Resende, and Pardalos (2002), Gonçalves and Almeida (2002),
Gonçalves and Beirão (1999).

The first prominent feature of BRKGA is its agnosticism in solving
the problem. In most (meta) heuristic algorithms, the optimization
mechanism is intrinsically tied to the problem structure. Thus, while
we apply the general framework, we still need to develop or code
details of the framework. In a BRKGA, such constant rework is avoided
using a standard representation of the solutions. The population in a
BRKGA lives in a half-open unit hypercube of dimension 𝑛, and each
solution or individual is represented by a point in (0, 1]𝑛, called a
chromosome. Such representation, proposed in Bean (1994), makes the
method independent of the problem it solves and, therefore, allows for
code reuse.

The second outstanding feature of a BRKGA is its fast convergence
to high-quality solutions. Such achievement is due to the double elitism
mechanism embedded in the evolutionary process of BRKGA, character-
ized by the handing out of the best solutions between generations and
the biased mating process towards the best individual. The backdrop
of double elitism is the fast convergence to a local optimum. BRKGA
deals with such issues by introducing mutants (random solutions) and
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with other operators. Nevertheless, BRKGA can deliver high-quality so-
lutions in time-critical applications in a reasonably short time, making
it suitable for several industrial applications.

Due to such features, there has been an increasing number of appli-
cations of BRKGA in the last years. In the same time frame, three studies
aimed to organize the literature of BRKGA (Gonçalves & Resende,
2011a; Prasetyo, Fauza, Amer, & Lee, 2015; Resende, 2012) on specific
applications, but their attempts are limited in the sample of articles
studied. Currently, there are no studies that focus on consolidating
the literature of BRKGA. A literature review can be helpful in this, as
this type of scholarly research focuses on presenting an overview of
performance, knowledge, and significant themes on a field, charting its
progress, gaps, and emerging areas, and suggesting opportunities and
solutions for future works (Lim, Kumar, & Ali, 2022).

In this paper, we present a detailed survey of the existing litera-
ture regarding BRKGA to discern the most studied problems, principal
modifications to the framework, and the most frequent hybridization
methods explored. With this, we aim to observe the current state of
the research with BRKGA, to detail the metaheuristics strengths and
weaknesses regarding different problem variants, and to present an
extensive overview of the applications of BRKGA. We expect readers
to have a concise but broad view of BRKGA applications helping them
in future endeavors.

Snyder (2019) details four phases to conduct a literature review: (i)
Designing the review; (ii) Conducting the review; (iii) Analysis; and (iv)
Writing the review. The first phase, designing the review, comprises
the definition of the scope of the review, the characterization of the
potential audience, and the specification of the following research
questions (RQ):

RQ1: Which are the areas of application of BRKGA and how did they
evolve?

Q2: Which are the types of hybridization involving BRKGA and how
did they evolve?

Q3: How was the BRKGA framework modified since its inception?

Q4: What are the opportunities for the growth of the BRKGA frame-
work?

The second phase demands the definition and application of the
earch method. We followed the seven-step approach listed in Thomé,
cavarda, and Scavarda (2016). Those stages are the database selection,
ollowed by the definition of keywords, review of abstracts, definition
f criteria for inclusion and exclusion of works, full-text review, and
ackward and forward search in the selected works.

We selected the Scopus database (Baas, Schotten, Plume, Côté, &
arimi, 2020; Elsevier, 2022) for this study. Scopus is one of the largest
urated abstract and citation databases, with over 39,100 journal titles
rom 5,000 publishers worldwide. It is less restrictive in the selection
f titles than its counterpart Web of Science, and has a bias towards the
ields of technology and engineering (Singh, Singh, Karmakar, Leta, &
ayr, 2021), thus being adequate for the purpose of this review.

The definition of keywords should be broad so as not to restrict
he number of studies and specific enough to bring only works related
o the topic (Cooper, 2015). The keywords used were ‘‘BRKGA’’ or
‘Biased random key genetic algorithm’’, resulting in 259 works. The
imitation to peer-reviewed articles in the English language resulted
n 144 works. Then, backward and forward snowball searches were
mployed. The former is defined as the review of the literature cited
n the articles yielded from the keyword search, while the latter is the
eview of additional articles that cite those retrieved (Webster & Wat-
on, 2002). Both snowball searches specifically looked for articles in
hich random keys were used with biased mating in genetic algorithms

o find possible older titles from before the formal definition of BRKGA
2

n 2011. After applying the keywords to the new registers alongside the
exclusion criteria and eliminating all works with non-related abstracts
and duplicated papers, we ended up with 162 articles published before
October 1st, 2023.

The third phase of the review, analysis, was fulfilled by obtaining
data regarding the used BRKGA methods, results, and hybrids. With
this, we categorized the different studies regarding problem character-
istics and methodologies and performed a qualitative content analysis
with an inductive approach (Seuring & Gold, 2012).

Finally, the fourth phase is the presentation of the results obtained
in the previous steps and detailed in the remainder of this paper, which
is structured as follows. Section 2 presents the fundamentals of the
BRKGA framework in a detailed manner. In Section 3, we present
a comprehensive description of BRKGA applications. Section 4 high-
lights the main hybridizations done with the framework. In Section 5,
we detail features that have been developed since the inception of
this algorithm. Section 6 comments about under-performing issues of
BRKGA and their possible causes. Possible directions for future research
are presented in Section 7. Finally, in Section 8, we make concluding
remarks.

2. Fundamentals of the BRKGA

This section presents the basics of Biased Random Key Genetic Algo-
rithms, as described in Gonçalves and Resende (2011a). Biased Random
Key Genetic Algorithms (BRKGA) fall under the category of genetic
algorithms, which are a class of search and optimization algorithms
inspired by the process of natural selection. Introduced in the 1970s
by Holland (1975), the fundamental concept of Genetic Algorithms
(GA) involves treating a problem’s solution as an individual within a
population. These algorithms operate with a population of potential
solutions, where each solution is represented as a chromosome or a
string of genes. The population itself comprises a collection of these
individuals.

GAs aim to replicate the process of evolution found in nature. Over
time, the population evolves by implementing the Darwinian principle
of survival of the fittest. Weaker individuals are unable to pass on their
characteristics and gradually diminish within the population, while
stronger individuals reproduce and transmit their characteristics. The
algorithm proceeds through a series of generations, and at the conclu-
sion of these generations, the individual with the best fitness value,
often representing the best solution, is the output of the algorithm.

Individuals from one generation are combined to produce offspring
that make up the next generation. The concept of passing on genetic
information is generally implemented by selecting individuals to form
pairs based on a probability proportional to their quality. This means
that stronger individuals are more likely to be chosen for reproduction.
The process of combining two solutions, the crossover, is the mecha-
nism that intensifies the search, focusing on propagating the best traits
of parents to their offspring. Once the two parents are selected, they are
combined in some manner to generate offspring. An external process,
akin to the mutations that occur in nature, introduces changes to the
genetic information of the offspring. When a mutation is beneficial, it
can lead to an improvement in the quality of the offspring.

In any search process, two essential components are at play: intensi-
fication and diversification. The crossover process contributes primarily
to intensification, enhancing the exploration of promising areas in
the solution space. On the other hand, diversification, responsible for
exploring new regions of the solution space, is chiefly influenced by
the process of mutation. The delicate balance between these phases is
pivotal to the success of genetic algorithms in effectively optimizing
complex problems.

This combination of selection, crossover, and mutation mimics the
process of natural selection and drives the evolution of the population

towards optimal or near-optimal solutions for the given problem.
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Fig. 1. Mating process in BRKGA.

2.1. Genetic algorithms and random-keys

A random key is a randomly generated real number in the contin-
uous interval [0, 1). Specifically, a vector 𝑋 composed of random-keys,
often referred to simply as random keys, consists of an array containing
𝑛 such random keys.

Optimization problem solutions can be effectively encoded using
these vectors of random keys, as proposed by Bean (1994). Once a solu-
tion is encoded, a decoding process becomes necessary. The decoder is
a deterministic algorithm that takes, as input, a vector of random keys
and outputs a solution to the optimization problem and its cost.

An example of a simple decoder applied to the Traveling Salesman
Problem (TSP) follows. In this problem, there is a set of 𝑛 cities that
must be visited exactly once, starting and ending in the same city. A
solution to this problem is essentially a sequence of cities. Assume a
vector of random keys denoted as 𝑋 = [0.234, 0.876, 0.321, 0.693, 0.087]
is given. Each position in the vector corresponds to an index repre-
senting a city. To extract a solution for the TSP from this random key
vector, one can simply sort this vector in increasing order and retrieve
the sequence of indices associated with the sorted sequence. In this
example, the sorted sequence yields the solution: 5-1-3-4-2, indicating
the order in which the cities are visited by the traveling salesman. By
applying the objective function to the decoded sequence, the decoder
can determine the overall cost or fitness of the solution.

A critical aspect of a genetic algorithm is the combination of
two solutions to generate offspring. In the basic BRKGA, as proposed
by Gonçalves and Resende (2011a), each parent is a vector of random
keys, and the mating process is performed using parameterized uniform
crossover (Spears & De Jong, 1991). For each gene (each position in
the random key vector), a biased coin is flipped to determine which
parent will contribute its allele (key or gene value) to the offspring. The
highest probability is assigned to the most fit parent, prioritizing the
selection of genetic material from the parent that represents a higher-
quality solution. This bias towards the fitter parent contributes to the
algorithm’s tendency to preserve and propagate the characteristics of
more promising solutions throughout the evolution process. Fig. 1 illus-
trates this crossover process where two parents with different fitnesses
are combined. The most fit of the two will have a higher probability of
passing on its genes to the child. A biased coin is flipped to determine
which gene is passed on. An outcome of heads (H) corresponds to the
most fit parents while tails (T), to the least fit.

2.2. The evolutionary process in the BRKGA

The first generation, also known as the starting or initial population,
consists of 𝑝 individual chromosomes, with each chromosome being
composed of 𝑛 genes. Each gene is assigned a value (allele) that is
generated uniformly at random within the interval [0, 1). To transform
the random key sequence into a solution and simultaneously evaluate
the solution’s cost or fitness, each chromosome is processed by the
3

Fig. 2. Evolutionary process between consecutive generations.

decoder. Usually, decoded solutions are feasible, but infeasibility can
be dealt with by penalties.

In generation 𝑘, the population is partitioned into two subsets: the
elite and the non-elite. The elite subset comprises solutions with supe-
rior fitness scores, while the non-elite are the remaining solutions found
in the population. Importantly, the size of the elite subset, determined
by a parameter 𝑝𝑒 is intentionally smaller than that of the non-elite
subset, prioritizing the preservation and evolution of high-performing
solutions throughout the generations of the genetic algorithm.

To obtain generation 𝑘+ 1, as shown in Fig. 2, three operations are
performed on the current population:

Reproduction simply copies the 𝑝𝑒 chromosomes (random-key vec-
tors) from the elite set of population 𝑘 to the successor population. This
illustrates the elitist characteristic of the original BRKGA.

Creation of mutants inserts 𝑝𝑚 new individuals in the successor
population. These individual chromosomes are created as those of the
initial population.

Crossover performs the mating process as described in Section 2.1
to generate the remaining 𝑝−𝑝𝑒−𝑝𝑚 individuals in population 𝑘+1. To
form the couple, a parent is randomly chosen from the elite set, while
the other parent comes from the non-elite partition. In some papers,
however, the second parent is selected from the entire population.

Once a new population is formed, its individuals are decoded and
their costs are computed. Finally, the new population can be partitioned
into elite and non-elite sets, and the evolutionary process restarts.

3. Main problems studied with BRKGA

To explore the areas of application of BRKGA and how they evolved,
as detailed in the first RQ, a thorough reading of 156 papers was
performed. Throughout the literature review it was possible to identify
ten categories of applications with at least four papers each, and 24
applications studied in up to three papers, for a total of 34 different
applications. For illustration purposes, Fig. A.1 in the supplementary
material shows the number of studies over the years per type of appli-
cation domain, while Fig. A.2 presents the total amount of papers in
each category. Note that since we only consider indexed peer-reviewed
papers in English from the Scopus database, the actual number of
papers is probably greater than what we report. For example, we do not
consider papers appearing in conferences nor in the arXiv repository.

In the following subsections, we present the applications of BRKGA,
detailing the core ideas of these algorithms and how they evolved
over time. The papers are presented in chronological order by micro-
problems studied.
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3.1. Scheduling

BRKGA has been extensively used for scheduling problems. In fact,
almost a third of all BRKGA applications focus on this category of
problems, which is by far the most studied problem with this meta-
heuristic. In 2002, Gonçalves and Almeida (2002) proposed a hybrid
BRKGA with local search for the simple assembly line balancing problem,
which managed to outperform several algorithms from the literature on
benchmark instances. The study from Moreira, Ritt, Costa, and Chaves
(2012) introduces the related problem assembly line worker assignment
and balancing problem. The proposed BRKGA+LS was compared favor-
ably with a constructive strategy – the same one used in the decoder
– and several algorithms from the literature. Later, Araújo, Costa, and
Miralles (2015) study the parallel assembly line worker assignment and
balancing problem, an extension of the previous one. Their BRKGA
outperformed a mathematical model but performed worse than a tabu
search (TS) strategy.

Several papers study variants of the single batch processing machine
problem (Kashan, Karimi, & Jolai, 2006; Li & Zhang, 2018; Malve &
Uzsoy, 2007; Mönch & Roob, 2018; Wang & Uzsoy, 2002). In Kong,
Liu, Pei, Cheng, and Pardalos (2020), the parallel batch scheduling
with deterioration and learning effects on parallel machines problem is
introduced. The authors show that a hybrid BRKGA with a differential
evolution algorithm has a better performance than both a particle
swarm optimization algorithm and a traditional BRKGA. The same
authors, in Kong, Pei, et al. (2020), focus on the integrated steel pro-
duction and batch delivery scheduling with uncertain rolling times and
deterioration effect problem. In this case, however, while a BRKGA
outperformed dynamic programming and differential evolution ap-
proaches, it is outperformed itself by a VNS. Zhang, Shan, and Zeng
(2022) studies the parallel batch processing machine scheduling problem
under 2D bin-packing constraints, which are added to increase applica-
ility. An orthogonal BRKGA approach is developed, in which initial
olutions are obtained with orthogonal design. This approach is shown
o improve convergence and performance, with robuster and stabler
esults in comparison with several alternatives. Yu, Qian, Zhang, and
ong (2023) investigates a two-echelon steel supply chain scheduling

problem with parallel batch processing and deterioration effect. A hybrid
BRKGA with flower pollination operators is shown to be effective and
efficient in comparison with alternatives such as PSO, FPA, and classic
BRKGA.

The job shop scheduling problem is another often explored with
BRKGA (Gonçalves, Magalhães Mendes, & Resende, 2005; Gonçalves &
Resende, 2014; Won, Bae, & Sutrisnowati, 2018). Homayouni, Fontes,
and Gonçalves (2020) studies the flexible job shop scheduling problem.
This work also used a population re-start operator, which acted simi-
larly to a previous reset strategy in the BRKGA literature. This BRKGA
outperformed a MILP and a number of approaches from the literature
on benchmark instances. Fontes and Homayouni (2023) explores a
bi-objective energy-efficient job shop scheduling problem with transport
resources. The authors introduce a novel multi-objective approach to
BRKGA, in which 𝛱 + 𝛺 populations are evolved. Each of the 𝛺
opulations focuses on one of the objectives, while 𝛱 populations
onsider all objectives and individual contribution to diversity. This
lternative is shown to find Pareto Fronts close to the true Pareto Front,
nd outperforms NSGA-II in solution quality.

Meanwhile, Valente, Gonçalves, and Alves (2006) focuses on the
ingle-machine scheduling problem with early and tardy penalties. Their

hybrid BRKGA+LS with a warm-start strategy outperformed many ap-
proaches from the literature, alongside variants without the warm-start
and local search. Valente and Gonçalves (2009) studies a variant of the
previous problem, the single-machine scheduling problem with linear early
and quadratic tardy penalties. The proposed BRKGA with warm-start and
local search had a better performance than several algorithms from the
4

literature and variants without the warm-start and/or local search. m
Four articles tackle variants of the project scheduling problem
Gonçalves, Mendes, & Resende, 2008; Gonçalves, Resende, & Mendes,
011; Mendes, Gonçalves, & Resende, 2009). In the most recent,
lmeida, Correia, and Saldanha-da Gama (2018) study the resource con-

strained project scheduling with flexible resources problem. Their decoder
had a variable strategy: a gene indicates which of two algorithms is
to be used to obtain the fitness value of a chromosome. This BRKGA
outperformed constructive heuristics, and the BRKGA with variable
decoding strategy was proved to be better than the ones with fixed
strategies.

Gonçalves and Sousa (2011) is the only study that applies BRKGA
to the economic lot scheduling problem. Their BRKGA was hybridized
with an LP model and managed to outperform several approaches from
the literature on randomly generated instances. The next article studies
the single-round divisible load scheduling problem. Brandão, Noronha,
Resende, and Ribeiro (2015) propose a BRKGA that has a better per-
formance than a multi-start algorithm combined with the decoding
heuristic and some strategies used in the literature. Later, the same au-
thors study the multi-round divisible load scheduling problem in Brandão,

oronha, Resende, and Ribeiro (2017). Again in comparison with a
ulti-start algorithm and literature strategies, the proposed BRKGA was
eemed the best approach.

The next two papers study the multi-user observation scheduling prob-
em. The first, authored by Tangpattanakul, Jozefowiez, and Lopez
2015a), compares BRKGA multi-objective variants, while the second,
lso by Tangpattanakul, Jozefowiez, and Lopez (2015b), uses the hy-
rid decoder formulation suggested in the first. The latter study shows
hat an indicator-based multi-objective local search performed better
han BRKGA for the studied problem. Damm, Resende, and Ronconi
2016) focuses on the field technician scheduling problem. Their BRKGA
ses a novel elite diversification strategy that only lets individuals be
opied in the reproduction step if they are significantly different from
he other copied individuals. This was successful in preventing prema-
ure convergence and performed better than a MILP model and several
onstructive heuristics. Later, the work from Cabo, González-Velarde,
ossani, and Ríos Solís (2018) explores the bi-objective p-batch machine
cheduling problem. The BRKGA proposed considered the bi-objective
ature of the problem in its decoding process and had competitive
esults with shorter computational time in comparison with two MILP
odels.

Two papers deal with the flowshop scheduling problem (Andrade,
yers, et al., 2019; Pessoa & Andrade, 2018). A generalization, the
orkforce allocation and two-stage flexible flow shop problem, was studied

n Bolsi, Lima, Alves Queiroz, and Iori (2022). BRKGA had the best
erformance on this lexicographic multi-objective problem in compar-
son with several heuristics, such as constructive methods, a random
ulti-start algorithm, a VNS, and a constraint programming model.
e, Guijt, Weerdt, Xing, and Yorke-Smith (2019) uses a hybrid BRKGA
ith an adaptive large neighborhood search algorithm to solve the
rder acceptance and scheduling problem. Their approach outperformed
any algorithms and MIP models from the literature on benchmark

nstances. The authors also introduced new instances for the problem.
he work from Andrade, Byers, et al. (2019) introduces the time- and
achine-dependent scheduling problem. In this work, both real-life-based
nd synthetic instances were used to prove the effectiveness of the
RKGA. In fact, the BRKGA had a better performance than several other
lgorithms, including ILS, simulated annealing, tabu search, genetic
lgorithm, and a MIP model.

Soares and Carvalho (2020) aims to solve the identical parallel-
achines problem with tooling constraints. The authors use a hybrid
RKGA+VND+LS to solve benchmark instances and prove that their
RKGA performs better than both several approaches from the lit-
rature as well as a MIP model. Rocholl and Mönch (2021) studies
he parallel-machine multiple orders per job scheduling problem with a
ommon due date. The BRKGA was the best among the tested ap-
roaches, including a MILP and an ILS. The resource-constrained parallel-

achine scheduling problem with setup times is explored in Soares and
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Carvalho (2022). Their BRKGA is hybridized with a VND with four
neighborhoods, is shown to obtain tighter upper bounds for the prob-
lem in comparison with state-of-the-art methods. Maecker, Shen, and
Mönch (2023) explores the unrelated parallel-machine scheduling problem
with job-machine-dependent delivery times and eligibility constraints. On
andomly generated instances, the proposed BRKGA can outperforms
everal approaches from the literature, but needs higher computing
ime than a VNS to reach competitive solutions.

Abreu, Tavares-Neto, and Nagano (2021) focuses on the open shop
cheduling problem with routing by capacitated single vehicle, in which a
cheduling problem is combined with a routing problem. Their hybrid
RKGA+IG approach outperformed a MIP model, a greedy insertion
lgorithm, an IGS, and a pure BRKGA on benchmark instances. This
ombination of problems is also explored in Kummer, Araújo, Buriol,
nd Resende (2022) on the home health care routing and scheduling prob-
em. The authors use BRKGA-MP-IPR (Andrade, Toso, Gonçalves, & Re-
ende, 2021) and analyze the impact of each novel feature on solution
uality and running times. The experiments indicate that BRKGA-MP-
PR with greedy cheapest-insertion constructive heuristic as decoder
as better performance than state-of-the-art methods if longer running
imes are affordable. Queiroga, Pinheiro, Christ, Subramanian, and
essoa (2021) presents a hybrid BRKGA with dynamic programming
or the single machine total weighted tardiness batch scheduling problem.

hen compared with a traditional ILS and a hybrid ILS+DP, the hybrid
RKGA outperformed its fellow hybrid, but both had worse perfor-
ances than the classical ILS. Silva-Soto and Ibarra-Rojas (2021) study

he bi-objective optimization approach for frequency setting and timetabling
roblem. The authors compare single- and bi-objective BRKGA with a
ILP model. The bi-objective BRKGA used a non-dominated sorting

lgorithm in its decoder and proved to be the most effective approach
or this problem.

The customer order scheduling problem with missing operations was
tudied in Abreu, Athayde Prata, Gomes, Braga-Santos, and Nagano
2022). The authors use a parameter-free restart procedure, that is per-
ormed when the worst fitness equals the best fitness in the population.

best improvement local search was also introduced. Their BRKGA
utperformed several approaches from the literature on generated in-
tances, with the combination of BRKGA+LS+restart being the best
verall. Xie, Sheng, Qiu, and Gui (2022) explores the cloud workflow
cheduling problem. An adaptive decoder is proposed in this paper,
here one of three decoding methods is chosen by a random proba-
ility. This probability changes during evolution, decreasing chance of
he more complex decoders and increasing the chance of a simpler de-
oding strategy. A warm-start strategy is employed, where some initial
hromosomes come from heuristics based on list scheduling and the
thers are based on a level heuristic. A local search is also customized.
he experiments show that adaptive decoding BRKGA has a robust
erformance and outperforms several approaches from the literature.
ontes and Homayouni (2023) investigates joint scheduling quay cranes
nd speed adjustable vehicles in container terminals. The bi-objective
RKGA uses the same strategy as Fontes, Homayouni, and Fernandes
2023). Experiments shown that the proposed BRKGA obtains diverse
nd uniformly distributed solutions, which cover, almost always, the
hole Pareto Frontier of the instance. Finally, Zhao, Liu, Wang, and
ue (2023) uses a floating point number encoding to solve the multi-
tation multi-robot task allocation and sequential planning problem. In the
hromosome, the digit before ‘‘.’’ indicates the work station, and the
igits after, the robot allocated to the job. Due to problem charac-
eristics, the authors also introduce three novel evolution operators.
ouble crossover uses two operations, in which the digits before and
fter ‘‘.’’ are analyzed independently. The same is done with double
utation. The elite re-optimization operator diversifies the elite set if

he minimum cost of the current and next generations are close by
pplying classic crossover and mutant operators. Experiments show
hat the proposed method outperforms a greedy insertion algorithm and
5

hybrid BRKGA+SA from the literature. a
Considering the many studies in this category, it is difficult to iden-
ify common trends for scheduling problems. There is approximately
he same amount of studies that either use benchmark or randomly
enerated instances, with the latter being a little more popular, and
he slight majority of papers use permutation-based decoders. However,
ne trend common to most studies is the use of hybridization, generally
ith local search algorithms, whose positive impact on performance
akes BRKGA the best approach to many of the studied problems.

.2. Network configuration

Several papers focus on the weight setting problem in OSPF routing.
he first, Ericsson et al. (2002), introduces a BRKGA with warm-start
hat performed better than several state-of-art algorithms. This BRKGA
as later extended by Buriol et al. (2005), who added a local search
perator to the previous framework. This addition outperformed both
he previous BRKGA and the pure local search. Buriol, Resende, and
horup (2007) changes the fitness function of their previously used
RKGA and observes which fitness calculation leads to better solution
uality. Finally, Reis, Ritt, Buriol, and Resende (2011) extends the
RKGA of Ericsson et al. (2002) and Buriol et al. (2005) for DEFT
outing. This BRKGA was outperformed by a two-stage approach.

Fontes and Gonçalves (2007) studies the single source uncapacitated
oncave minimum cost network flow problem. Their hybrid BRKGA with
ocal search managed to outperform a pure BRKGA on benchmark
nstances. A related problem, the hop-constrained minimum cost flow
panning tree problem, was studied by Fontes and Gonçalves (2013).
heir hybrid BRKGA+LS with a multi-population strategy found the
est solutions for all instances and had better results in comparison with
mathematical model.

The survivable IP/MPLS-over-WSON multilayer network optimization
roblem was explored in two papers. Ruiz, Pedrola, Velasco, Careglio,
ernández-Palacios, and Junyent (2011) introduced a BRKGA and a
athematical model for this problem, while Pedrola, Ruiz, Velasco,
areglio, González De Dios, and Comellas (2013) compared a multi-
opulation BRKGA with several GRASP approaches. The authors of
he latter showed that a hybrid GRASP+PR approach was the most
ffective.

Noronha, Resende, and Ribeiro (2011) studies the routing and wave-
ength assignment problem. The proposed BRKGA had a better perfor-
ance when compared with a state-of-the-art tabu search algorithm

nd other approaches from the literature. Later, Brandão, Noronha, and
ibeiro (2016) focused on the same problem. The authors used two
ifferent algorithms as decoders, and show that the resulting BRKGAs
re more effective than many constructive algorithms in the litera-
ure. Finally, Pinto, Ribeiro, Rosseti, and Noronha (2020) compared

BRKGA with the best algorithms in the literature and a multi-start
ersion of the decoder algorithm, in which the BRKGA was considered
he most effective.

Velasco, Wright, Lord, and Junyent (2013) focuses on three strongly
elated problems: the area partitioning problem, the IP/MPLS area net-
ork design problem, and the core network design problem. The au-

hors introduce three different BRKGAs, each focusing on one of those
roblems, and observe the quality of the given solutions in close-to-
eal instances. The focus of Pedrola, Careglio, Klinkowski, Velasco,
ergman, and Solé-Pareta (2013) is the regenerator placement and di-
ensioning problem. The authors hybridize a BRKGA with both VND and
ath relinking. This hybrid algorithm outperformed several approaches,
ncluding a MILP and an evolutionary multi-start GRASP+VND+PR.

Morán-Mirabal, González-Velarde, Resende, and Silva (2013) stud-
es the handover minimization problem. The proposed BRKGA+LS hybrid
howed better results in comparison with a MIP model but had worse
esults than an evolutionary GRASP with path relinking. Andrade, Re-
ende, et al. (2015) tackles the wireless backhaul network design problem.
n real-life inspired instances, the proposed BRKGA outperformed both
MIP model and a multi-start algorithm. Ruiz, Albareda-Sambola,
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Fernández, and Resende (2015) focuses on the capacitated minimum
spanning tree problem. The authors introduce different decoders, along-
side a local search strategy, strategic oscillation to explore new areas
of the solution space, and a neighborhood reduction strategy to ignore
non-feasible moves on the tree. In comparison with other alternatives,
the BRKGA had higher solution quality and lower computational effort,
especially when combined with the local search algorithm.

Three articles focus on the distribution network reconfiguration prob-
lem (Cavalheiro, Vergílio, & Lyra, 2018; Faria Jr., Resende, & Ernst,
2017; Raposo, Rodrigues, & da Guia da Silva, 2020). In the most
recent paper, Raposo et al. (2020) adapts the BRKGA for multi-objective
optimization and compares it favorably with a NSGA-II on benchmark
instances. Finally, the paper authored by Mikulski and Tomczewski
(2021) uses a multi-objective BRKGA to reduce transmission losses in
power distribution networks. This multi-objective approach found better
esults than a multi-objective particle swarm optimization (PSO) and a
SGA-II on four test cases.

For network configuration problems, the use of indicator-based
ecoders is of note, something done by more than half of the studies.
nother characteristic in common is the presence of hybridization, with
ither local search, warm start, or multi-population strategies. The use
f benchmarks is common, as it happens on almost three-fourths of the
apers in this category.

.3. Location

In this subsection, problems that consider the location of one or
everal facilities are considered. One such problem is the tollbooth prob-

lem, whose BRKGA was proposed in Buriol, Hirsch, Pardalos, Querido,
Resende, and Ritt (2010) and later extended in Stefanello et al. (2017).
Those studies show that the approach with local search performs
significantly better in time and quality for benchmark instances, in
comparison with exact models and a local search-free approach. An-
other such problem is the regenerator location problem studied in Duarte,

artí, Resende, and Silva (2014). Using benchmark instances, the
uthors show that BRKGA has a better performance than the ones in
he literature, but a GRASP+LS hybrid outperforms it.

A version of the quadratic assignment problem, the unequal area
acility layout problem, is studied by Gonçalves and Resende (2015).
he proposed approach hybridizes BRKGA with linear programming
onstraints. The hybridized version outperformed the pure BRKGA
nd several other algorithms from the literature. In fact, both BRKGA
ersions improved the best-known solution of several benchmark in-
tances. Lalla-Ruiz, Expósito-Izquierdo, Melián-Batista, and Moreno-
ega (2016) studies the quadratic assignment problem. Their BRKGA
as an improvement phase, similar to a local search, and performs
etter than a migrating birds algorithm and a discrete differential
volutionary algorithm with a local search portrayed in literature.
imilarly, Stefanello et al. (2019) studies both a generalization of the
revious problem and its specific application. This paper also hybridizes
BRKGA with path-relinking and local search. This hybrid BRKGA out-
erforms mathematical models and a hybrid GRASP-PR-LS for smaller,
andomly generated instances.

Both Lopes et al. (2016) and Pessoa, Santos, and Resende (2017)
tudy hub-location problems. The approach in Lopes et al. (2016) uses

hybrid BRKGA with local search and warm-start, which performs
oorly in comparison with multi-start VND and local search, and an
nteger programming model with valid inequalities. Meanwhile, Pessoa
t al. (2017) compares several BRKGAs and proves this approach’s
ffectiveness and efficiency. A two-level hub location routing problem with
irected tours is studied in Freitas, Aloise, Da Costa Fontes, Santos,
nd Da Silva Menezes (2023) with a modified decoding process. Their
RKGA outperformed a MIP and the state-of-the-art variable neighbor-
ood decomposition search and improved the objective value for many
f the benchmarks from the literature.
6

The study of Biajoli, Chaves, and Lorena (2019) focuses on the two-
tage capacitated facility location problem. Their BRKGA+LS algorithm

outperforms the genetic algorithm and clustering search presented in
the literature on known benchmark instances, and it is extended to a
multi-product version in Mauri et al. (2021). This extended algorithm
also manages to outperform a clustering search algorithm and several
mathematical models.

Johnson et al. (2020) studies two special cases of the cover-by-pairs
ptimization problem. In experiments with synthetic and real-world-
ased problems, the BRKGA outperforms its only competitor in the
ath-disjoint case, a multi-start greedy algorithm. However, in the set-
isjoint case, a heuristic-based approximation algorithm is the winner.
onde, Andrade, and Pessoa (2021) uses a BRKGA-MP-IPR (Andrade
t al., 2021) with shaking, warm-start, and local search to solve the p-
ext center problem. The authors show that their algorithm has a better
erformance than the best in the literature, which was a GRASP+VND
ybrid. Finally, Villicaña-Cervantes and Ibarra-Rojas (2022) studies
he accessibility location problem for COVID-19 test sites. The proposed
pproach has the objective of increasing accessibility. BRKGA obtained
olutions with similar quality to a MILP model with a fraction of its
omputational time.

In general, the adaptations of BRKGA to location problems have
ome common characteristics. All studies use permutation-based de-
oders, i.e., the fitness evaluation of the chromosomes involves the
orting of the random keys, except Johnson et al. (2020), which uses an
ndicator-based decoder, and Freitas et al. (2023), Villicaña-Cervantes
nd Ibarra-Rojas (2022), whose approaches combine indicator and
ermutation methods. The great majority of applications also hybridize
RKGA with local search algorithms and use benchmark instances to
bserve algorithm performance. Lastly, BRKGA tends to outperform
r match the best approaches in the literature for problems in this
ategory.

.4. Cutting and packing

One of the first applications of the defined BRKGA framework
as Gonçalves and Resende (2011b), which explores the container

oading problem. The hybrid BRKGA with multi-populations was shown
o perform better than several alternatives from the literature, in-
luding GRASP, VNS, genetic algorithms, and tabu search algorithms.
eanwhile, Gonçalves and Resende (2013) studies the 2D and 3D

in packing problems. Their approach statistically outperforms the ones
resented in the literature, which include tabu search, local search,
nd GRASP+VND approaches. The 3D bin packing problem was also
tudied by Zudio, da Silva Costa, Masquio, Coelho, and Pinto (2018),
hich hybridizes a BRKGA with a VND. This combination was shown

o be effective in comparison with pure BRKGA, with better solutions
n fewer generations.

Meanwhile, two papers focus on variants of the cutting and packing
roblem. Mundim, Andretta, and Queiroz (2017) first introduces a
RKGA approach, which is then compared favorably with the results
f GRASP and MIP models from the literature on benchmark instances.
ater, Amaro Júnior, Pinheiro, and Coelho (2017) uses a different
trategy in its decoding phase, and either outperforms or matches
esults found in the literature. Souza Queiroz and Andretta (2020)
tudies the 2D cutting problem with irregular shaped items. The authors
bserve that the BRKGA had solutions of similar quality to the ones
rom a general VNS. However, the BRKGA was significantly faster than
ts competitor. Similarly, the additive manufacturing production planning
roblem, which is a version of the 2D irregular packing problem, was
xplored in Lu, Hu, and Ng (2023). A BRKGA is at the heart of the pixel-
ased AM packing algorithm (PAMPA). which can be used to check
olution feasibility.

Later, Gonçalves and Wäscher (2020) introduces a BRKGA for the
D non-guillotine cutting problem. Using benchmarks from the guillotine
ersion, the proposed algorithm is faster and has higher solution quality
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than two of the best algorithms in the literature. The same problem
was studied in Oliveira and Romero (2022), with an approach based
on the one from Gonçalves and Resende (2013). The proposed BRKGA
adds a procedure to group plates into blocks. This addition improves
performance, with results equal to or better than those previously pub-
lished. Amaro Júnior, Santos, Carvalho, Araújo, and Pinheiro (2021)
uses a BRKGA for the minimum time cut path problem. This BRKGA
uses a decoder that gives both cut order and direction. The proposed
approach outperformed a GA and a commercial software on artificially
generated instances. Lastly, Oliveira, Carravilla, and Oliveira (2022)
uses a packing problem with uncertainty to evaluate performance of
a scenario-generating BRKGA. In it, each chromosome represents a
possible scenario, which is evaluated regarding diversity and impact
on a given first-stage solution.

For packing problems, the BRKGA was mostly used in similar ways.
In fact, all proposed BRKGA except Zudio et al. (2018) use permutation-
based decoders without any sort of hybridization. Not only that, but
almost all articles use benchmark instances, and in all studies, BRKGA
was considered the best algorithm with respect to solution quality and
computational times.

3.5. Vehicle routing

Grasas, Ramalhinho, Pessoa, Resende, Caballé, and Barba (2014)
explores the blood sample collection problem. The BRKGA was shown to
e an interesting alternative, in comparison with a MIP model, that
ould be easily used in the practical applications of this study. Three
apers focus on uni- and multi-directional road network problems (Huang,
antos, & Duhamel, 2018, 2020b). In the most recent one, Huang, San-
os, and Duhamel (2020a) adds disruption constraints to the problem.
he proposed BRKGA was outperformed by an ILS.

Ruiz, Soto-Mendoza, Ruiz Barbosa, and Reyes (2019) studies the
pen vehicle routing problem. The authors combine a BRKGA with a
ocal search and a strategic oscillation operator. In comparison with
everal algorithms in the literature and a GRASP, the hybrid BRKGA
ad the best performance. The work of Ibarra-Rojas and Silva-Soto
2021) focuses on a generalization, the vehicle routing problem with egal-
tarian distribution. The authors compare three decoders and introduce

mathematical model for the problem. Carrabs (2021) studies the set
orienteering problem. Their BRKGA was hybridized with three simulta-
neous local searches, a reset operator, and a multi-population strategy.
This approach was shown to be highly effective in comparison with a
VNS and a matheuristic. Schenekemberg, Chaves, Coelho, Guimarães,
and Avelino (2022) focuses on the dial-a-ride problem with private fleet
nd common carrier. To solve this problem, the authors use BRKGA-QL,
hybridization with Q-Learning-based parameter control. They also

ropose a local search with seven neighborhoods. The hybrid BRKGA-
L+LS dominated a BRKGA-QL and a branch and cut algorithm in
erformance and computational time on both benchmark instances and
case study.

Schuetz et al. (2022) explores robot-trajectory planning problems. A
ovel BRKGA-based scheme is proposed, where several methods can
reate solutions for the first generation of the evolution. BRKGA was
hown to be faster than a SA applied within a Quadratic Unconstrained
inary Optimization approach but lost in speed to a GA with an SA-
ased evolution operator. Finally, Marques Jr. et al. (2023) studies the
ulti-objective green routing drone grid problem, where the airspace is
ivided into horizontal and vertical bands. BRKGA was shown to obtain
iable solutions quickly but was outperformed by VND-based methods.

There are some trends common to BRKGA used to solve routing
roblems. The use of real-life-based instances is a characteristic of this
ategory, with almost half of the studies doing such. Another common
rend is the use of permutation-based decoders, done by most articles.
astly, BRKGA was shown to be the better algorithm on almost all
apers, except those in which it is compared with ILS algorithms.
7

3.6. Traveling salesman problem

Morán-Mirabal, González-Velarde, and Resende (2014) is the first
use of BRKGA for any generalization of the TSP. Specifically, the
authors study the family traveling salesman problem. Their BRKGA ap-
proach shows better results than a MIP model and a hybrid GRASP+PR
heuristic on smaller instances, but the hybrid GRASP was shown to be
better on the larger instances. The same problem is studied in Chaves,
Vianna, da Silva, and Schenekemberg (2024), with a chromosome
whose last gene indicates which of the five decoding procedures will
be used to decode the individual. The BRKGA approach uses Q-Leaning
to control its parameters during evolution, alongside a random VND
to control a local search with six neighborhoods, and a perturba-
tion component for the crossover between similar individuals. The Q-
Learning approach outperformed state-of-the-art algorithms, including
the one from Morán-Mirabal et al. (2014), and a parallel branch-and-
cut algorithm on larger instances. Later, Bernardino and Paias (2018)
addresses the traveling purchaser problem. For this, the authors propose
two different BRKGA strategies, both hybridized with a local search. In
comparison with a hybrid GA+LS, there was no difference in solution
quality among the three algorithms, but the hybrid genetic algorithm
had considerably smaller computational times.

Silva, Chaves, Yanasse, and Luna (2019) study the multi-commodity
TSP with priority prizes. The authors propose two hybrid BRKGA with
ILS, where the ILS itself is hybridized with a VND. One of the BRKGA
approaches is an adaptive BRKGA (A-BRKGA), introduced in Chaves,
Gonçalves, and Lorena (2018). In the experiments, the A-BRKGA+ILS
was not shown to be statistically better than the BRKGA+ILS, but both
had better performances than a MIP model.

The work of Chagas, Toffolo, Souza, and Iori (2020) introduces the
double TSP with partial last-in-first-out loading constraints. Their BRKGA
performs better than two LP models on the proposed instances. Fi-
nally, Chagas, Blank, Wagner, Souza, and Deb (2021) focuses on the
bi-objective traveling thief problem, in which the TSP is combined with
a knapsack problem. The bi-objective approach hybridizes a BRKGA
with an NSGA-II, alongside warm-start and a local search algorithm.
This BRKGA either matched or outperformed several approaches in
the literature. Amaro Júnior, Carvalho, Santos, Pinheio, and Celedonio
(2023) studies a generalization of the TSP called laser cutting path
planning problem. In it, the objective is to minimize the time the laser
takes between the corners of a cutting form. The authors hybridize
A-BRKGA with a perturbation strategy. A Eulerian path heuristic is
used to generate initial solutions. The BRKGA approaches outperform
a MIP model, though A-BRKGA had worse performance than its classic
counterpart.

The studies in this category have great diversity in the choice of
instances, with artificially generated, new, and benchmarks being used.
This diversity is not extended to BRKGA performance in comparison
with other algorithms, which follow a specific trend: namely, BRKGA
outperforms most exact approaches, but tends not to be effective with
respect to other metaheuristic algorithms. Also in common is the use of
permutation-based decoders, as all papers in this category of problems
apply.

3.7. Clustering

Festa (2013) uses a BRKGA for clustering biological data. This
BRKGA uses an improvement procedure inside its decoder that is
similar to a local search approach. Compared with several state-of-the-
art algorithms, including variations of hybrid GRASP+PR, the BRKGA
was effective and efficient in finding good solutions. This BRKGA was
adapted by Oliveira, Chaves, and Lorena (2017) for the constrained
clustering problem. The authors also add to the algorithm a local search
external to the decoding process. In this case, the BRKGA+LS was
outperformed by a column generation algorithm hybridized with PR
and local search.
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Chaves et al. (2018) introduces the adaptive BRKGA with clustering
search for the capacitated centered clustering problem. The A-BRKGA is a
variation that employs on-line parameter tuning. Its combination with
clustering search was shown to have the best performance compared
to a classic BRKGA and other state-of-the-art algorithms. This problem
is also explored with A-BRKGA in Xu, Guo, and Zeng (2022), but with
an iterative neighborhood local search. The novel approach is shown
to improve known solutions with a small increase in running times.

Martarelli and Nagano (2020) uses BRKGA for unsupervised feature
selection. The authors introduce two variations of BRKGA. The differ-
ence between the two was the use of warm-start. BRKGA was the best
approach compared with others in the literature, but the inclusion of
warm-start solutions led to better results. The paper by Fadel, Ochi,
Brito, and Semaan (2021) studies the multivariate micro aggregation
problem, in the context of statistical disclosure control. The authors
introduce two decoders for this problem. The proposed BRKGA was
compared with several other methods and consistently found better
results than its competitors. Finally, Brito, Fadel, and Semaan (2020)
proposes a BRKGA for the k-medoids clustering problem. The authors
detail a crossover operator that works as a local search with best
improvement strategy. Tests show the efficacy of the approach in
comparison with several from the literature.

There are some characteristics in common in the papers that focus
on clustering. Most of the article use indicator-based decoders. All arti-
cles test their proposed approaches on benchmarks or known datasets,
and most of them hybridize BRKGA with local or clustering search
algorithms.

3.8. Graph problems

Clique problems are the focus of several articles (Fontes, Gonçalves,
& Fontes, 2018; Pinto, Ribeiro, Riveaux, & Rosseti, 2021; Pinto, Ribeiro,
Rosseti, & Plastino, 2018). In the most recent one, Melo, Ribeiro, and
Riveaux (2023) studies the minimum quasi-clique partitioning problem.

heir approach was shown to obtain results at least as good as the ones
n the literature and to find better results for a fifth of the instances.

Lima, Aquino, Nogueira, and Pinheiro (2022) focuses on the mini-
um broadcast time problem. The proposed approach combines a math-
uristic-based BRKGA with two possible decoders. Experiments show
hat the matheuristic outperformed state-of-the-art methods in quality
nd computational time. Silva, Ribeiro, and dos Santos Souza (2023)
ackles the chordal completion problem. The proposed BRKGA uses a
ermutation-based decoder to eliminate possible orderings of triangu-
ation in the graph. In a comparison with the winner algorithm of the
arameterized Algorithms and Computational Experiments Challenge
017, BRKGA was shown to find feasible solutions for all instances in
hich the model failed and to improve solution quality. Finally, Londe,
ndrade, and Pessoa (2022) introduces the root sequence index alloca-

ion problem. This telecommunication problem is tackled as a general-
zation of the classical vertex coloring problem. The authors customize
hree decoding approaches, two local searches, a warm-start procedure,
nd shake and reset operators for two versions of this problem, with
iffering objectives. BRKGA was shown to obtain better solutions than
n ILS and VNS on one of the objectives and to be comparable to VNS
n the other.

For this category of problem, all BRKGAs use permutation-based
ecoders on benchmark instances except Londe et al. (2022), which
roposes an indicator-based decoder and introduces new instances.
lso noteworthy is the quality of the obtained solutions, with BRKGA
onsistently outperforming several state-of-the-art algorithms.

.9. Parameter optimization

In Caserta and Reiners (2016), the BRKGA is used to tune a cross
ntropy-based scheme, itself used to solve a binary classification prob-
em. Cicek and Ozturk (2021) uses a BRKGA to optimize ANN parameters
8

with time series forecasting. The algorithm was successful with respect
to several classical approaches, such as SARIMA, SVR, ARIMA, and
classical GA, but had a clear disadvantage in computational times.

The work of Sun and Zhou (2022) focuses on Bayesian network
structure learning. The authors use the algorithm NOTEARS as both a
decoder and local optimizer to solve the non-convex problem. The pro-
posed BRKGA can achieve a good performance on benchmark networks
and on a real data set in comparison with pure NOTEARS, classical
GA, and hybrid PSO+GA. Falls, Bernardello, Castrillo, Acosta, Llort,
and Galí (2022) uses BRKGA to estimate the ideal set of parameters to
simulate the behavior of the biogeochemical component of an ocean
model. In experiments, the authors observe the ability of BRKGA to
create simulations and compare those with real data. Finally, Japa et al.
(2023) optimizes hyperparameters for neural networks. BRKGA+Bayesian
Walk exploitation procedure was shown to produce better results in a
more consistent manner than several approaches from the literature.

Some conclusions may be observed for the papers in this category of
application, such as that all proposed BRKGA approaches use indicator-
based decoders. One point that is always observed is the speed of
the algorithm in comparison with others from the literature to solve
both benchmarks and real-life datasets. It is also of note that BRKGA
tends to outperform other metaheuristic approaches for problems in
this category.

3.10. Container loading

Gonçalves and Resende (2012) introduces a multi-population BRKGA
for the 3D container loading problem. This algorithm had the best overall
performance in comparison with several other approaches, includ-
ing genetic algorithm, branch-and-bound, tabu search, and GRASP.
Later, Zheng, Chien, and Gen (2015) studies the same problem, also
with a multi-population BRKGA, but with a bi-objective spin. The
bi-objective approach outperformed several variants on benchmark
instances.

Ramos, Oliveira, Gonçalves, and Lopes (2016) hybridizes a multi-
population BRKGA with a constructive heuristic, an approach shown
to be effective in comparison with several other algorithms. These
algorithms include the one in Gonçalves and Resende (2012). This
multi-population BRKGA was later extended by Ramos, Silva, and
Oliveira (2018) to consider other necessary constraints, leading to
improvements in solution quality and efficiency.

Even though the container loading problems are very similar, in
concept, to packing problems, the authors of the former problem use
different strategies than those of the latter. In this category, it is
of note the extension of already known and well-performing BRKGA
approaches to consider new problem characteristics. In fact, the com-
parison of performance among proposed algorithms is frequent in this
category, alongside the use of known benchmarks, permutation-based
decoders, and multi-population strategies.

3.11. Other problems

This subsection details studies that focus on problems that are not
included in any of the previous categories. The first article, Gonçalves
and Resende (2004), uses a hybrid BRKGA+LS for manufacturing cell for-
mation. Resende et al. (2012) studies the Steiner triple covering problem.
Another application of BRKGA presented by Silva, Resende, and Parda-
los (2014) is to solve non-linear systems of equations with multiple roots.
Two studies focus on berth allocation problems. The first, Lalla-Ruiz,
González-Velarde, Melián-Batista, and Moreno-Vega (2014), outper-
formed both a tabu search and several branch-and-price approaches.
Later, Correcher and Alvarez-Valdes (2017) hybridizes a BRKGA with
two distinct local searches and a matheuristic.

Similarly, the unit commitment problem is studied in two papers.
Roque, Fontes, and Fontes (2014) introduces a BRKGA+LS hybrid
heuristic. Roque, Fontes, and Fontes (2017) studies a multi-objective
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version of the previously mentioned problem. The authors use the same
decoder as in the previous study, but in a multi-objective BRKGA.
Andrade, Toso, Resende, and Miyazawa (2015) focuses on the win-
ner determination problem in combinatorial auctions. The authors use a
BRKGA with warm-start solutions originating from a LP model, along-
side three decoding strategies. Chan, Tibrewal, Prakash, and Tiwari
(2015) tackles the multi-item capacitated lot sizing problem. The cloud
resource management problem is the focus of Heilig, Lalla-Ruiz, and Voß
(2016).

Gonçalves, Resende, and Costa (2016) studies the minimization of
open stacks problem. Chaves, Lorena, Senne, and Resende (2016) tack-
les the minimization of tool switches problem. The proposed approach
hybridizes BRKGA with a clustering search algorithm. Hottung and
Tierney (2016) focuses on the container pre-marshaling problem. An-
drade, Ahmed, Nemhauser, and Shao (2017) hybridizes a BRKGA with a
feasibility pump to find feasible solutions to MIP. The protein–ligand flex-
ible molecular docking problem is studied by Leonhart, Spieler, Ligabue-
Braun, and Dorn (2019).

Oliveira, Carravilla, and Oliveira (2018) study the car rental prob-
lem. The proposed methodology includes a warm-start with constraint
programming and integer non-linear programming models, linear pro-
gramming constraints included in the decoding process, and a MIP
model applied to the best solution found by BRKGA. Oliveira, Carrav-
illa, Oliveira, and Costa (2019) explores the car rental capacity-pricing
stochastic problem. The authors combine a BRKGA with a matheuristic to
generate solutions for a two-stage stochastic problem and show the effi-
ciency of the proposed approach in several instances. The study of Brito
et al. (2020) focuses on optimal allocation in stratified sampling. Pinacho-
Davidson and Blum (2020) tackles the minimum capacitated dominating
set problem. The proposed BRKGA uses an ILP solver inside its decoder
and outperforms a state-of-the-art local search heuristic and a MIP
model.

Pan, Zhang, Yan, Lwin, and Skibniewski (2021) uses BRKGA in
the decision-making phase of a framework to mitigate Covid-19 spread.
Ochoa, Malan, and Blum (2021) compares the search trajectory net-
work of several metaheuristics. BRKGA is used in the combinatorial
optimization case study, in which a 𝑝-median problem was explored.
The authors observe that BRKGA quickly gets trapped in different
areas of the solution space and visits a higher number of solutions
compared to other metaheuristics. The work of Pastore, Menna, and
Asprone (2022) studies topology optimization for stress-constrained struc-
tures. This problem is in the context of additive manufacturing, and the
authors use Bézier curves to obtain the best paths. To test the results,
the authors made a reduced-scale print of a piece and observed its
structural capabilities. Silva, Leite, et al. (2023) explores the maximum
diversity problem. Experimental results in benchmarks indicate that a
hybrid BRKGA+LS outperforms other approaches from the literature
in terms of solution quality. Finally, Morgan, McGrath, and Weck
(2023) searches for multi-spacecraft maneuvers for mobile target tracking.
Two case studies point out that a BRKGA-based method outperforms
its competitors but with diminishing returns for greater spacecraft
numbers.

3.12. Summary

The studies detailed in this section highlight several points in regard
to BRKGA use and characteristics. First, the decoders are frequently
permutation-based, i.e., use sorted random-keys as a part of the de-
coding process. Second, the use of hybridization is noted to improve
BRKGA performance, especially when a local search or matheuris-
tics are used. Third, the majority of papers use benchmark instances,
and compare the proposed algorithms with state-of-the-art approaches.
Fourth, BRKGA almost always outperforms MIP models and tends to
obtain similar or better results than other algorithms. Fifth and last,
authors do not frequently build on already existing BRKGA approaches,
9

instead introducing new decoding processes or operators.
The scenario shown in this section can be summarized as such:
BRKGA is a versatile algorithm, used successfully in several problems,
and that improves significantly when hybridized. The use of hybridiza-
tion is, thus, crucial for an efficient and well-performing BRKGA, and
is the focus of the next section.

4. Main hybridizations with BRKGA

To observe the evolution of hybridization with BRKGA, as pointed
out by the second RQ, another detailed reading of the selected papers
was performed. In this case, the objective was to observe and detail
other algorithms or frameworks simultaneously used with BRKGA to
solve different optimization problems. We explore 94 papers that use
diverse hybrid strategies. For illustrative purposes, the number of stud-
ies over the years can be seen in Fig. A.3, while Fig. A.4 shows the
total amount of papers in each category. Please note that papers can
be included in more than one category of hybrid.

4.1. Local search heuristics

The complementary use of two or several heuristics to explore all
available knowledge is the basis of memetic algorithms (Moscato et al.,
1989). The use of local search (LS) algorithms as the intensification
phase of an evolutionary algorithm is a well-known application of the
memetic framework, and tries to mimic the idea of Lamarck evolution,
that individuals may pass characteristics obtained during their lives to
their descendants (Cotta, Mathieson, & Moscato, 2018). Several of the
papers that apply local search alongside BRKGA do not give extensive
details about LS neighborhood or stopping criteria, or when it is applied
in the main loop of the algorithm. Details on the complexity of the LS
are also, in general, scarce. Thus, in the first part of this section, the use
of simpler local searches – not based on specific heuristic frameworks
– is addressed. They are divided by which module of the BRKGA the
LS is embedded in and by the neighborhood explored. The second part
of this section explores the application of known heuristics as the LS of
BRKGA.

In BRKGA, the use of local search algorithms may be divided into
two categories, indicating in which phase of the GA it is used. The most
frequent approach is the use inside the decoding phase, either before,
e.g., Festa (2013) Fontes and Gonçalves (2007, 2013), Gonçalves and
Resende (2014), Gonçalves et al. (2011), Heilig et al. (2016), Morán-
Mirabal et al. (2013), Ruiz et al. (2015), Silva et al. (2014), Stefanello
et al. (2017), Valente and Gonçalves (2009), Londe et al. (2022), and
Maecker et al. (2023) or after, e.g., Gonçalves and Almeida (2002),
Gonçalves et al. (2005), Gonçalves and Resende (2004), Lopes et al.
(2016), Malve and Uzsoy (2007), Ruiz et al. (2019), and Valente et al.
(2006) the calculation of the fitness of the chromosome.

Outside of the decoding phase, the local search is usually applied
to some of the best solutions on a specific number of generations. This
is due to the fact that the application of local search on all individuals
may be too computationally expensive for specific problems, especially
if the mentioned local search has a large neighborhood. In this category,
several papers apply local search on all offspring generated by the
crossover process (Brito, Semaan, & Fadel, 2022; Buriol et al., 2010,
2005, 2007; Oliveira et al., 2017; Ruiz et al., 2011; Silva, Leite, et al.,
2023). Other papers only use local search after the evolutionary process
is completed, often on the best incumbent solutions (Bernardino &
Paias, 2018; Biajoli et al., 2019; Chagas et al., 2021; Mauri et al., 2021;
Roque et al., 2014). Finally, some papers select special chromosomes to
apply local search, usually only on selected generations (Abreu et al.,
2022; Carrabs, 2021; Japa et al., 2023; Kashan et al., 2006; Lalla-Ruiz
et al., 2016; Londe et al., 2021).

One can also note that there is some variation among the explored
neighborhoods. In fact, one can observe three options of moves among
the used local searches. The first is the exchange between items of

different categories, which is, by far, the most common approach.
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This includes the exchange of items in different categories, e.g., Biajoli
et al. (2019), Buriol et al. (2010, 2005, 2007); Gonçalves and Almeida
(2002); Fontes and Gonçalves (2007, 2013); Gonçalves and Resende
(2004); Gonçalves et al. (2011); Carrabs (2021); Kashan et al. (2006);
Londe et al. (2021); Malve and Uzsoy (2007); Mauri et al. (2021);
Oliveira et al. (2017); Reis et al. (2011); Roque et al. (2017); Ruiz
et al. (2015) and Stefanello et al. (2017), and creation or modification
of the categories themselves, e.g.,Festa (2013); Gonçalves and Almeida
(2002), and Ruiz et al. (2015).

The second possible approach is comprised of the swap of items
in the same category. This move is more frequently used on prob-
lems whose solution is permutation-based, i.e., based on the ordering
of items such as jobs in a schedule (Abreu et al., 2022; Maecker
et al., 2023; Valente & Gonçalves, 2009; Valente et al., 2006) or
locations (Bernardino & Paias, 2018; Chagas et al., 2021; Lalla-Ruiz
et al., 2016; Lopes et al., 2016), often with adjacent swap moves.

The third commonly used neighborhood is composed of a greedy
insertion or removal of the items of a solution. That is, the most
advantageous item, in regards to the fitness value of the solution,
is modified (Bernardino & Paias, 2018; Carrabs, 2021; Gonçalves &
Resende, 2014; Heilig et al., 2016; Londe et al., 2022; Lopes et al.,
2016; Silva et al., 2014).

Several other search strategies used in BRKGA are derived from
other well-known heuristics. The tabu search (TS) strategy first ap-
peared in Glover (1977) and was first named as such in Glover (1986).
This method considers adaptive memory and responsive exploration,
by forbidding certain moves in a neighborhood with either short-
or long-term memory. The study of Gonçalves and Resende (2014)
combines a tabu search with a local search based on Akers’ graphical
method (Akers, 1956).

A variable neighborhood descent (VND) is a search strategy that ex-
plores different neighborhoods in a deterministic way (Duarte, Sánchez-
Oro, Mladenović, & Todosijević, 2018). It is a variant of the vari-
able neighborhood search (VNS) framework introduced in Hansen and
Mladenović (2005). As a search method, VND has been frequently
hybridized with BRKGA. Pedrola, Careglio, et al. (2013) uses a VND
after the application of a path relinking heuristic that explores, on some
high-quality solutions, every 𝑁-move neighborhoods after a set number
f generations. Stefanello et al. (2019) similarly applies the VND every
eneration, after the decoding step and the use of path relinking. The
uthors use four neighborhoods: shift, swap, chain2L, and chain3L,
ith the last two being chained shift moves.

Pessoa and Andrade (2018) applies a two-neighborhood VND in-
ide the decoding process for a flowshop scheduling problem. Those
eighborhoods are of the insert type, which moves jobs to new posi-
ions, and of the interchange type, which swaps two jobs. Andrade,
ilva, and Pessoa (2019) uses a similar strategy but with a caveat: as
he insert neighborhood acutely increases computational effort, it is
estricted to only one interaction. The study of Soares and Carvalho
2020) also inserts a VND into the decoder, with three search moves:
nsertion, interchange, and one-block grouping. The last neighborhood
s specifically tailored to the problem characteristics.

Another hybridization of BRKGA and VND is shown by Zudio et al.
2018) for a bin packing problem. The authors combine the VND with
he crossover operator. The combination of BRKGA and VND is also
bserved in Soares and Carvalho (2022) for a scheduling problem.
his heuristic is applied to all individuals of the elite set, with four
eighborhoods of insertion, exchange, relocation, and block grouping.
n the same work, a simple local search is applied to all unexplored
ndividuals of the non-elite set.

A random VNS (RVNS) is used by Schenekemberg et al. (2022).
fter a set amount of generations, a label propagation method is used to

dentify communities of similar individuals. The RVNS is applied to the
nexplored best solutions of each community, by randomly selecting
ne of the seven neighborhoods to explore. This approach is used with
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ix neighborhoods by Chaves et al. (2024). In this case, the application
of the RNVS only occurs when the current generation is a multiple of
𝑛∕5, with 𝑛 being the number of nodes in a TSP problem. A VNS is used
alongside the PAMPA framework proposed in Lu et al. (2023). To test
the effectiveness of the BRKGA-based framework, it was applied to the
solutions obtained by a VNS algorithm.

The clustering search approach (Oliveira, Chaves, & Lorena, 2013)
identifies interesting individuals in the search space using clustering
strategies and applies a local search to those individuals. The studies
of Chaves et al. (2016) and Silva et al. (2019) use a label propagation
algorithm (Raghavan, Albert, & Kumara, 2007) to find interesting
solutions. This method constructs and iteratively labels a graph of the
solution. The local search applied by Chaves et al. (2016) considers two
moves: the removal and insertion of items in the clusters, and the swap
of items in different clusters. Meanwhile, Silva et al. (2019) uses an
iterated local search (ILS) (Lourenço, Martin, & Stützle, 2003), whose
perturbation phase is based on swapping one-on-one items from differ-
ent categories, and whose local search phase is a variable neighborhood
descent (Hansen & Mladenović, 2005) with three neighborhoods: the
two from Chaves et al. (2016), and a two-opt in which adjacent items
are exchanged. In both papers, the use of the clustering search improves
solution quality without significantly increasing computational times.

An adaptive large neighborhood search (ALNS) (Pisinger & Ropke,
2007) is hybridized with BRKGA in He et al. (2019) for a scheduling
problem with setup times. The ALNS is used after the decoding process,
once for every solution that reaches a minimum fitness threshold. The
ALNS uses five removal operators: random, minimal revenue, minimal
unit revenue, maximal setup time, and worst sequence removal. The
insertion operators are based on maximal revenue and maximal unit
revenue.

An iterated greedy algorithm (IGA) (Ruiz & Stützle, 2007) is used in
the intensification phase of the BRKGA proposed by Abreu et al. (2021).
This algorithm is applied after a set number of iterations to the best
solution of that generation. It is based on the removal of a percentage
of the operations of a solution, followed by the reconstruction of the
solution. The hybrid approach had better performance than a pure
BRKGA.

In Xu et al. (2022), two Iterative Neighborhood Local Search Al-
gorithms are introduced, one inexact and the other, exact. The inexact
INLS is used on Individuals selected by a label propagation method after
a set amount of generations. After the end of the evolutionary process,
the exact INLS is used on the incumbent solution. The authors observe
that this addition improves quality and performance in comparison
with state-of-the-art methods.

As this section shows, there are several ways of combining BRKGA
and local search heuristics. Generally, this hybridization manages to
improve solution quality at an increase in computational effort.

4.2. Warm-start

The classical BRKGA framework creates the initial population with
randomly generated individuals. Nonetheless, the introduction of good
solutions in the initial population has been noted to improve the
performance of the algorithm. Studies in this category create one or
several initial high-quality solutions and introduce them to the initially
generated population as individuals.

Generally, this approach uses known heuristics from the literature
to generate the initial solutions. Ericsson et al. (2002) does this, using
known heuristics to generate two solutions, while Buriol et al. (2005)
generates one initial solution using a simple heuristic. It is also done
by Valente et al. (2006), but, in this case, three solutions are created.
The authors show that the use of good individuals improves the perfor-
mance of the algorithm. Pessoa and Andrade (2018) introduce in the
initial population one solution from one effective heuristic from the
literature. Meanwhile, Andrade, Silva, and Pessoa (2019) use diverse
solutions of a known heuristic from the literature. A similar approach

is used by Lopes et al. (2016). Martarelli and Nagano (2020) creates
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half of the initial population randomly. In the other half, the first
and second quartiles and the first solution from the third quartile
receive solutions from three known heuristics. This strategy is shown
to improve algorithm performance and convergence rate. The study
of Abreu et al. (2021) uses a greedy insertion algorithm to create two
solutions for the initial population. Chagas et al. (2021) use known ef-
fective algorithms to generate solutions to both sub-problems (knapsack
and TSP). Then, those solutions are combined to generate complete
solutions for the traveling thief problem. In Xie et al. (2022), three
solutions come from algorithms from the literature, while all other
initial individuals are obtained from a level heuristic. Londe et al.
(2022) uses a customized heuristic to introduce one individual in the
first population. Amaro Júnior et al. (2023) uses an Eulerian heuristic
to generate initial individuals for a TSP problem. Lastly, the insertion
of solutions from two constructive heuristics in Silva, Ribeiro, and dos
Santos Souza (2023) is shown to increase algorithm performance.

An alternative to the use of heuristics to generate initial solu-
tions is the use of mathematical models. Andrade, Toso, Resende, and
Miyazawa (2015) introduces solutions from a linear relaxation of the
MIP formulation of the problem. The model interactively fixes genes
to create several solutions, and its use leads to better performance
on all proposed decoders. Oliveira et al. (2018) use three strategies
to generate warm-start solutions: decomposing the complex integer
non-linear programming model to a simpler one and solving it to
optimality, relaxing the model’s integrality constraints and solving it
to optimality, and constructing naive solutions. The work of Chagas
et al. (2020) uses the model of a less constrained version of the problem
to create a possible solution. This solution is the optimal solution of
the relaxed model. The paper from Schuetz et al. (2022) uses solutions
from several alternative algorithms in their initial population. The
methods include linear programming, quantum annealing, and greedy
algorithms, among others.

An additional use of warm-start is when the proposed strategy
demands specific characteristics improbable to occur in random indi-
viduals. The paper of Kashan et al. (2006) on single batch processing
illustrates this situation, as the proposed BRKGA uses a decoding strat-
egy that needs specific batch sizes to be effective, something that is
improbable in random individuals. This means that, for that decoder,
the entire initial population is generated by a robust heuristic. This
heuristic aims to reduce the chance of BRKGA converging to bad solu-
tions, by modifying the number of batches associated with them. Zhang
et al. (2022), meanwhile, uses orthogonal design to create the initial
population. This is shown to increase convergence rate and solution
quality in comparison with random-generation of initial solutions.

One may observe that warm-start solutions have been shown to
improve performance and convergence rate, independently of which
methods are used to create the solutions. More than half of the studies
with this hybridization use known algorithms from the literature, while
the use of mathematical programming is also frequent.

4.3. Other heuristics

Path Relinking (PR) (Glover, 1997) is an intensification strategy
that explores the neighborhood in the path between two distinct so-
lutions (Ribeiro & Resende, 2012). Pedrola, Careglio, et al. (2013) uses
this strategy alongside a VND. The evolutionary process of the BRKGA
is stopped after a set number of generations when all solutions in
the elite population have a chance of being selected for the so-called
elite set. In this set, path-relinking and the VND can be applied to all
solutions, with probability proportional to the distance between them
and the guide solution. The PR used has a back-and-forth strategy,
in which guide and base solutions change places after the first path
is completed. Stefanello et al. (2019) also uses PR alongside VND. In
this case, both are applied after the decoding step on all generations.
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If a better solution is found, then the corresponding chromosome
is rewritten. Both studies point out that the hybridization of path-
relinking, VND, and BRKGA leads to better results without a severe
increase in computational effort. Later, Schuetz et al. (2022) uses PR
to refine high-quality solutions of the last population of BRKGA.

The differential evolution (DE) algorithm is inspired by geometry
instead of by nature (Storn & Price, 1997). Kong, Liu, et al. (2020)
uses the JADE (Zhang & Sanderson, 2009) framework as the crossover
operator of a BRKGA. This crossover is also of note as it considers three
possible parents: one from the elite set, one from the non-elite set, and
one randomly chosen among all individuals. The crossover probability
comes from a normal distribution, while the mutation chance is derived
from a Cauchy distribution. This addition causes longer running times
but also improves solution quality and convergence rate in comparison
with a pure BRKGA.

Queiroga et al. (2021) uses a dynamic programming (DP) ap-
proach (Bellman, 1966) as the decoding process of a proposed BRKGA.
Specifically, the authors use the approach proposed in Chou and Wang
(2008). This hybrid is shown to have worse performance than other
approaches for the given problem.

The Flower Pollination algorithm (Yang, 2012) is used in the
crossover operator of Yu et al. (2023). In it, there are three possible
crossover combinations in each application. First, the global pollination
strategy considers the combination of the current solution with the
best known solution. Second, the local pollination scheme combines
the current solution with one elite and one non-elite individuals. Third
and last, a parameterized uniform crossover can be used. This approach
had success in comparison with pure BRKGA and FPA.

4.4. Multi-objective

Multi-objective optimization problems bring challenges to the
BRKGA framework, as the competition between objectives demands
special adaptations to items such as decoding processes and chro-
mosome ordering and selection. One such adaptation is the work
of Zheng et al. (2015). In the chromosome ordering phase, their bi-
objective algorithm uses a Pareto ranking process with the average of
the weighted objectives. The weights used change at each generation,
as they depend on their proportion among the current values of the
complete population.

Tangpattanakul et al. (2015a, 2015b) also propose a bi-objective
approach with modifications inside the chromosome ordering phase.
The authors experiment with methods inspired by successful multi-
objective algorithms, such as NSGA-II (Deb, Pratap, Agarwal, & Me-
yarivan, 2002), SMS-EMOA (Beume, Naujoks, & Emmerich, 2007),
and IBEA (Zitzler & Künzli, 2004), with results pointing to better
computational times of the one inspired by IBEA. The authors also
conclude that a hybrid decoder – in which several algorithms are
used as part of the decoding process, and the best solution among
all is used as the chromosome fitness value – is more effective than
simpler decoding heuristics. Meanwhile, Roque et al. (2017) indicates
that a selection method based on NSGA-II can also be effective for a
bi-objective BRKGA.

The bi-objective BRKGA of Cabo et al. (2018) also uses the hybrid
decoder strategy of Tangpattanakul et al. (2015a, 2015b), but with a
twist. In this case, one of the objective functions refers is the number
of batches in the scheduling problem. After the decoding process is
performed, this batch number is inserted into the last genes of the
chromosome, while the other objective is used by the algorithm as the
fitness of the chromosome.

Both papers of Huang et al. (2018, 2020a) focus on the same bi-
objective problem, but with different approaches. Huang et al. (2018)
uses an aggregated fitness function, with weights 𝛼 and 1−𝛼. This algo-
rithm also updates the Pareto front every time a novel non-dominated

solution is found. The other paper only has a modification regarding
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the aggregated fitness value of the chromosomes inside the decoding
process.

The studies by Raposo et al. (2020), Mikulski and Tomczewski
(2021), Bolsi et al. (2022), and Marques Jr. et al. (2023) show the
only BRKGAs adapted to more than two objective functions. Raposo
et al. (2020) consider a three-stage problem, that may be solved in two
ways: the first stage is solved independently, then the two others are
solved together, or all three stages are solved concurrently. The authors
use the concept of Pareto dominance to select solutions and con-
struct the Pareto front. The work by Mikulski and Tomczewski (2021),
meanwhile, modifies the elite set of the BRKGA for a multi-objective
problem. In this case, the elite individuals are non-dominated solutions,
while the non-elite chromosomes are dominated. This adaptation of
the framework means that the selection and crossover operators are
modified. The three objectives of Bolsi et al. (2022) are considered
in a lexicographic manner, with three decreasing weights indicating
preference. In Marques Jr. et al. (2023), an aggregated fitness function
is used for their three objectives. This means that a single-objective VNS
could be used in their experiments with little modification.

Silva-Soto and Ibarra-Rojas (2021) is the only study in which a bi-
objective BRKGA approach is compared with a single-objective BRKGA.
For the bi-objective algorithm, the authors combine BRKGA with a
hierarchical non-dominated sorting algorithm for the chromosome sort-
ing phase. For the comparison, the BRKGA uses an aggregated fitness
function with weighted sums, in which 𝛼 = 0.5. The hybrid approach
was proven to be more efficient in finding the Pareto front than its
competitor.

Chagas et al. (2021) adapts the BRKGA to a bi-objective problem by
hybridizing it with NSGA-II. This is done in the chromosome selection
phase to join the strengths of both approaches for solving combinatorial
optimization problems.

A novel multi-objective framework for BRKGA is introduced by
Fontes et al. (2023) and Fontes and Homayouni (2023). The multi-
population BRKGA (mp-BRKGA) evolves 𝛺 + 𝛱 populations indepen-
dently and in parallel. Each 𝛺 population considers only one of the |𝛺|

objectives, while the remaining 𝛱 populations observe all objectives
simultaneously. This algorithm borrows ideas from NSGA-II to create
and rank Pareto fronts, but unlike NSGA-II, mp-BRKGA always allows
offspring and mutant solutions to pass tho the next generations. The 𝛺
populations use the classical BRKGA evolutionary process. Meanwhile,
for each the 𝜋 ∈ 𝛱 populations the elite set is chosen from a pool
of solutions, which consists of the best solutions of the previous 𝛺
populations and the best individual of the given 𝜋 population. After a
set number of generations, all 𝛱 populations contribute with their best
elite solutions to the others’ pools, from which repeated chromosomes
are removed. In tests, this approach was proven effective in comparison
with NSGA-II and is able to cover the whole Pareto fronts of the
instances successfully.

For this type of hybrid, some trends may be observed. Generally,
BRKGA is adapted to bi-objective problems, with modifications to its
chromosome ordering and selection phase and, more rarely, to the
decoding process. The multi-objective algorithm is rarely compared
with its single-objective counterpart and frequently uses concepts from
effective multi-objective algorithms to improve performance. The use
of aggregated fitness functions with weighted sums is also present in a
third of the studies.

4.5. Matheuristic

There are several ways to combine mathematical formulations and
heuristics to improve solution quality. A matheuristic is defined as the
hybridization of metaheuristics and mathematical programming tech-
niques (Boschetti, Maniezzo, Roffilli, & Röhler, 2009). These methods
12
use exact approaches as tools within the heuristic framework (Fis-
chetti & Fischetti, 2018). In BRKGA, mathematical programming is
frequently applied to the decoding process. One such work was au-
thored by Gonçalves and Sousa (2011), which uses a mathematical
model as part of the decoder. After an individual is decoded, it goes to a
surrogate model, which is then solved by an LP solver. The surrogate’s
objective value is used as chromosome fitness. A similar process is used
by Gonçalves and Resende (2015), with a slight difference. In this case,
the LP model is only applied if the solution given by the chromosome
is promising. The same idea of using a chromosome solution to obtain
an easier surrogate model is also applied by Oliveira et al. (2018).
This proposed algorithm applies a MIP solver to the best solution
found by the BRKGA. Oliveira et al. (2019) uses a model inside the
decoder to find the objective value of the second-stage problem, given
the first-stage solution and possible scenarios. Lastly, Sun and Zhou
(2022) uses the NOTEARS algorithm inside its decoder for Bayesian
network structure learning. This algorithm considers the optimization
of the dual version of the equivalent problem, which is also non-
convex.

An alternative use of mathematical models inside BRKGA is in the
form of exact local searches. An example of this is Correcher and
Alvarez-Valdes (2017). The exact local search is applied to all individu-
als at the end of each generation for a berth allocation problem, as long
as the time limit is not exceeded. This local search removes a cluster,
then uses a MILP model to reallocate its items, while considering items
in other clusters as fixed. This exact local search outperforms other
methods and the matheuristic has better solution quality than a pure
BRKGA. A similar strategy is used by Mönch and Roob (2018). In this
case, a model-based heuristic is applied if a solution is worse than a
percentage of a reference value. Lastly, Pinto et al. (2021) uses an
exact local search. In this case, it is internal to the decoder, with a
given probability of occurring in each decoding process. In comparison
with a non-exact decoder, the matheuristic leads to consistently better
solutions.

Andrade, Ahmed, et al. (2017) combines BRKGA with a feasibility
pump heuristic to find feasible solutions to mixed integer programs. The
proposed framework has three phases. BRKGA is used with a feasibility
pump decoder in the evolutionary phase. After a few generations, the
local MIP search phase occurs. It is applied to a pool of the best
solutions, where solution quality is evaluated in regard to the num-
ber of non-integer variables. Meanwhile, the fixing phase reduces the
problem’s size by fixing variables that have the same values between
relaxation and rounding. The use of the evolutionary phase is noted by
the authors to lead to better results.

Lastly, Pinacho-Davidson and Blum (2020) uses mathematical mod-
els in a novel way. In each generation, some of the solutions are
selected to be merged. This selection may be elitist, with only elite
solutions picked, or random. Afterwards, a MIP model is applied to
the merged solution. The optimized solutions are then inserted back
to the algorithm as a new chromosome, and the worst individuals in
the population are eliminated. A solution-merging strategy is also used
in Lima et al. (2022). After some generations without improvement,
solutions are merged and to create a sub-graph with the original
vertices and the solutions’ edges. An ILP model is used to optimize the
problem induced by this sub-graph, and the obtained solution is added
to a pool of best solutions.

Considering BRKGA-based matheuristics, there are some character-
istics in common. One is using models inside the decoding process,
which occurs in more than half of the studies. Moreover, comparisons
between exact and non-exact heuristics are rare and only occur when
the hybrid uses exact local searches.

4.6. Machine learning

Machine learning techniques may be used in conjunction with
metaheuristics to improve performance by extracting useful knowledge
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within the search process (Karimi-Mamaghan, Mohammadi, Meyer,
Karimi-Mamaghan, & Talbi, 2022). One of its uses is for online param-
eter control, something that Chaves et al. (2018) applies to BRKGA.
The proposed approach, called Adaptive BRKGA (A-BRKGA), updates
parameters for population size, elite proportion, mutant proportion,
crossover probability, and maximum number of generations at each
iteration. It also uses two self-adaptive parameters, named 𝛼 and 𝛽. The
former indicates how many individuals in the elite restricted control list
(RCL) evolve, while the latter is used as a probability of perturbing sim-
ilar individuals. Parameters 𝛽 and crossover probability are included in
the chromosome, thus evolving alongside the iterations. The crossover
probability used is always the one belonging to the non-RCL parent.

Among the parameters, population size, mutant proportion, and 𝛼
decrease with each iteration, while elite proportion increases. Maxi-
mum number of generations proportional to user-set parameter 𝛾 and
the minimum and maximum population sizes. In comparison to a pure
BRKGA, A-BRKGA outperformed its competitor.

With no changes, the same framework is used by Silva et al. (2019).
Again, the A-BRKGA performed better than a pure BRKGA, but the
difference in results was not statistically significant. Later, it is also
successfully applied in Amaro Júnior et al. (2023), Xu et al. (2022).

Schenekemberg et al. (2022) introduces BRKGA-QL, a novel online
parameter control scheme. In it, a Q-Learning algorithm (Watkins &
Dayan, 1992) is used to control the same parameters as A-BRKGA
with a Markov Decision Process in an environment in terms of actions,
states, and rewards. The Q function is used to map state–action pairs
to possible rewards, with an exponential decreasing 𝜂-greedy policy to
chose following actions. This policy gives 1 − 𝜂 chance of choosing the
action with highest reward to increase intensification, and 𝜂 probability
of increasing diversification by choosing randomly. In this case, 𝜂
gradually decays during the evolutionary process. This framework is
also used in Chaves et al. (2024), and in both cases was shown to be
an interesting alternative in comparison with state-of-the-art methods.

Another approach using machine learning methods is Pan et al.
(2021). The proposed framework has a predictor creation phase, using
a random forest algorithm. The results from this phase are then used
with a BRKGA to formulate the ideal mitigation strategy for COVID-19
spread.

Xie et al. (2022) proposes an adaptive decoding procedure. With
three possible decoders, this procedure increases chance of a simpler
decoding process being used by late evolution. This means that, in
early generations, more complex decoding processes tend to be used
and thus increase the chance of converging to local optima, while in
late generations there is a higher chance of doing a global search in
the solution space.

4.7. Stochastic

The first work in this category is Oliveira et al. (2019). This
work solves a two-stage stochastic optimization problem using two
co-evolving populations. The first population evolves solutions for the
first-stage problem. In the decoding process, the first-stage solutions
proposed by the chromosome are fixed as part of an approximate
LP model. This model is solved to optimality. The other population
evolves scenarios, with a focus on diversification. The fitness function
of the second population, thus, is a measure of how much the decoded
scenario differs from the others. The link between populations is the
calculation of total cost between first-stage solutions and scenarios. The
authors note that this approach does not consider probability distribu-
tions among the scenarios, but also that it provides the decision-maker
with several solutions to a multi-stage problem with uncertainty.

Later, the same authors introduce a method of scenario generation
in Oliveira et al. (2022). In it, individuals represent possible scenarios
and their fitness is measured by the variation of their impact on the
first-stage solution, as calculated by crowding distance. There are three
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possible cases to create the scenarios: one for solution with perfect
information, in which one first-stage solution is developed for each
scenario; one for average scenario, in which one solution is generated
and used to observe scenario impact on all generations; and one for
moving average scenario, where a new first-stage solution is created
for each new generation.

4.8. Summary

As shown in this section, the use of hybridization alongside BRKGA
is a widespread practice that frequently improves both solution quality
and convergence rate, but at the cost of higher computational effort.
The explored papers also show that it is a versatile metaheuristic,
capable of being combined in several ways with other frameworks. Of
note is the use of local search heuristics as intensification strategies,
done by a third of all studies and shown to improve performance.

There are some limitations observed in the studies presented in
this section. The use of hybridization encumbers an already computa-
tionally heavy algorithm. This preoccupation with computational effort
may be the reason for the limited number of papers in the machine
learning and stochastic categories, as the techniques associated with
both hybrids also have a high computational burden. Different func-
tionalities inside the BRKGA framework might be a solution to mitigate
this impact, as shown in the next section.

5. New features added to BRKGA

Several new features were added to the BRKGA framework in
the ten years since its formal introduction. This is the focus of the
third research question. The difference between a hybridization and a
feature is that the former defines items added from outside the BRKGA
framework that demand modifications of the algorithm, while the latter
is comprised of strategies adapted specifically for the framework. The
most important features are described in this section.

Island model. The island model is a tool to prevent premature conver-
gence of the algorithm (Pandey, Chaudhary, & Mehrotra, 2014;
Whitley, Rana, & Heckendorn, 1999). It is based on a facet
of Darwinian evolution, in which isolated populations evolve
in different ways. Thus, this model involves the evolution of
parallel populations, which exchange elite individuals after a set
number of iterations. This procedure also improves individual
variability (Andrade et al., 2021).

Reset operator. The application of a full population reset may be
demanded if the algorithm cannot escape a local optimum for
a high number of generations (Toso & Resende, 2015; Whitley
et al., 1999). This procedure re-initializes all chromosomes with
randomly generated genes, destroying the benefits of conver-
gence but potentially encountering new locations in the solution
space. As this operator increases population diversity, it also
prevents premature convergence (Pandey et al., 2014).

hake operator. The shaking operator introduced in Andrade, Silva,
and Pessoa (2019) aims to increase the diversity of the popula-
tion while partially preserving some of the genes obtained in
the evolutionary phase. This is done by partially re-initiating
the population, applying random modifications to the elite indi-
viduals and re-initializing non-elite chromosomes with random
keys. Thus, the structure of the elite chromosomes is partially
preserved, and the diversity of the non-elite set is guaranteed.

nline parameter tuning. The Adaptive BRKGA (Chaves et al., 2018)
introduces online parameter tuning on the BRKGA framework.
In this approach, the parameters relative to crossover probabil-
ity, population size, elite and mutant proportions, and maximum

number of generations are updated at each iteration. This is
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done to increase exploration in earlier generations while increas-
ing exploitation in the later ones. The parameters are modified
in one direction, i.e., the trajectory of the parameters is either
increasing or decreasing over time. The same parameters are
modified in the BRKGA-QL framework (Schenekemberg et al.,
2022). In this approach, the Q-Leaning reinforced learning al-
gorithm is used inside the BRKGA framework with possible
increases and decreases. The chance of diversification decays
exponentially during evolution in this approach.

Multi-parent crossover. In the original BRKGA framework (Gonçalves
& Resende, 2011a), the crossover operator uses two randomly
chosen individuals as parents, one from the elite set and another
from the non-elite set. The mating of the two parents is biased in
favor of the genes belonging to the elite parent. Andrade et al.
(2021) introduces the multi-parent crossover. The algorithm
uses 𝜋𝑒 elite parents and 𝜋𝑡 − 𝜋𝑒 parents from the non-elite set,
and the genes are selected with a fitness ranking-based bias
function (Bresina, 1996).

mplicit path-relinking. The Implicit Path-Relinking procedure (IPR)
is also introduced in Andrade et al. (2021). As an intensification
strategy, the classical path-relinking explores the neighborhood
obtained in the path between two distinct solutions (Glover,
1997; Ribeiro & Resende, 2012). The use of path-relinking is
typically problem-dependent, but the implicit variant creates
the procedure inside of the existing BRKGA solution space.
The proposed method is applied alongside the island model so
that base and guide solutions come from different populations.
Those individuals may belong to either the elite set or be ran-
domly selected among all chromosomes. Andrade et al. (2021)
introduces two types of this procedure, the permutation- and
indicator-based IPR, whose application depends on the type of
decoder.

ulti-objective evolution. Fontes and Homayouni (2023), Fontes
et al. (2023) introduce the multi-population BRKGA (mp-
BRKGA) for multi-objective combinatorial problems. In this
approach, the 𝛺 populations focuses on only one of the problem
objectives, while the 𝛱 populations concentrate on all existing
objectives. The elite set of each of the 𝜋 ∈ 𝛱 populations are
stored in a pool of solutions, comprised by the best current
chromosome of 𝜋 and of all 𝛺 populations. After a set amount of
generations, solutions from all pools are mixed and evaluated.

pplication programming interfaces. Several papers introduce ap-
plication programming interfaces for BRKGA. Toso and Resende
(2015) presents a C++ application that handles most of the
evolutionary processes. The user only needs to define the de-
coding function. This implementation may use the OpenMPI
API to parallelize the decoding phase into multiple threads and
can be downloaded at http://github.com/rfrancotoso/brkgaAPI.
This API was used to develop a GNU-style dynamic shared
Python/C++ library of BRKGA. This library was introduced
in Silva, Resende, and Pardalos (2015), where an extensive
example of its utilization is detailed, alongside download and
user instructions. Andrade et al. (2021) presents the BRKGA-MP-
IPR framework and corresponding API. This API, available in the
C++, Python, and Julia languages, implements the multi-parent
and IPR strategies discussed in this section, alongside the multi-
population strategy. Oliveira, Carravilla, Oliveira, and Resende
(2021) presents an API similar to the approach used in Oliveira
et al. (2019). This implementation co-evolves one population
of scenarios and another of solutions for a two-stage stochastic
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problem. Finally, Oliveira et al. (2022) introduces an API for
scenario generation on two-stage problems, with three possible
strategies for scenario evaluation.

One can note that the introduced features mainly focus on in-
creasing population diversity, especially among elite solutions. Genetic
algorithms tend to suffer from premature convergence, i.e., conver-
gence to a sub-optimal solution (Pandey et al., 2014). In BRKGA, this
is related to a lack of diversity in the elite set (Damm et al., 2016).

6. Possible under-performing issues

There are some possible challenges for this method in terms of appli-
cations, which are the focus of the fourth RQ. Those tend to be derived
from BRKGA’s characteristics, such as its ability to extract and optimize
hidden structures in problems. This is possible due to the double elitist
mechanism carried out during the evolutionary process. Notably, the
standard BRKGA biased uniform crossover, when set correctly, can
keep blocks of ‘‘good’’ genes (from the elite parents), possibly carrying
optimal substructures from the problem. This mechanism is ideal for
real-world problems that usually carry many hidden structures. How-
ever, vanilla BRKGA may lose performance on some classical problems,
e.g., the simplest versions of set covering and routing problems, such
as the Traveling Salesman Problem (TSP).

This situation was previously noted in Resende et al. (2012) which
applied BRKGA to solve the Steiner triple covering problem. Since
the solution landscape is relatively flat for this problem, the authors
reduced the crossover bias (𝜌) and increased the mutant ratio (𝑝𝑚∕𝑝)
to inject more variability into the population. Though this led to long
computational times, it enabled the BRKGA to explore a larger portion
of the solution space than would be possible with a vanilla BRKGA
using the usual parameter settings. We can observe a similar effect
in Andrade, Toso, Resende, and Miyazawa (2015), where the winner
determination problem in combinatorial auctions was modeled as a
multidimensional knapsack problem, a relatively traditional problem
with a flat response surface. While the BRKGA still produced better
results than the other algorithms, the difference was not very large. This
was also observed on the 2D and 3D bin packing problem (Gonçalves
& Resende, 2013) where the authors modified the fitness function to
include not only the number of bins but also the remaining available
space in the bins thus unflattening the landscape. Lastly, we can note
that the BRKGA does not perform well on the traditional Traveling
Salesman Problem. Such a fact is due to the uniform crossover, which
is inadequate for the problem. Indeed, several papers have devel-
oped special-purpose crossover methods such as Al-Omeer and Ahmed
(2019) and Ahmed (2020) for the TSP, showing that such methods
outperform standard ones.

Also, the double elitism comes with a price: premature convergence.
This situation may benefit scenarios where we need to quickly respond
to the user, such as real-time planning systems. However, premature
convergence may lead to sub-optimal solutions when we can afford
additional optimization time. Indeed, the performance of BRKGA is
greatly affected by its auxiliary perturbation procedures, such as reset
and shaking. Although many papers do not emphasize the number of
calls to methods, such as reset and shaking, this number of calls is
frequent, and as Section 5 shows, novel features that affect population
diversity are frequent in the literature. In Andrade, Silva, and Pessoa
(2019), we can see the effect of the shaking procedure on the solution
quality compared to a vanilla BRKGA.

Therefore, properly tuning the parameters that control the popu-
lation diversity as well as the thresholds to call these perturbation
auxiliary methods is essential. The framework proposed here shows
some important counters, such as the number of iterations between
solution improvements, large offsets, and others that can be used to

check the convergence.

http://github.com/rfrancotoso/brkgaAPI
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7. Possible directions for future research

The development of BRKGA since its inception has encompassed
several modifications and additions to the framework. It also sheds
light on diverse strengths of the metaheuristic and details methods to
increase performance and versatility. The literature survey also points
out to several possible research avenues for BRKGA. This section details
those worthwhile areas for future research efforts, which are also the
focus of the fourth research question.

An area where those efforts can thrive is the development of features
and generalizations of the framework for multi-objective problems
and problems with uncertainty. The mp-BRKGA framework (Fontes &
Homayouni, 2023; Fontes et al., 2023) is a potential starting point for
multi-objective approaches, as it is shown to have success in the cover-
age of the whole Pareto frontier of the instances. However, while the
mp-BRKGA framework was developed for multi-objective applications,
both papers in which it is used study bi-objective problems. In fact, the
use of BRKGA for problems with more than two objectives is scarce,
and points out to a possible research avenue. Meanwhile, for problems
with uncertainty, solely two-stage problems were studied. In both cases,
BRKGA was used to generate scenarios for the second-stage, either
in parallel to the first-stage solution (Oliveira et al., 2019) or using
the first-stage solution to compute scenario quality (Oliveira et al.,
2022). Problems with uncertainty have several real-life applications,
and the development of BRKGA-based frameworks to solve them would
be noteworthy additions to the current literature.

Another possible research avenue is the application of hybridiza-
tion, specially with matheuristics, machine learning (ML) methods, and
other algorithms. As indicated in Section 4, presently there is no unified
framework for the application of matheuristics in BRKGA. A possible
reason is the fact that the most common use of mathematical models
is inside the decoding process, which must be customized for each
application. The use of exact constraints as part of the genetic operators
(reproduction, crossover, mutation) has not been yet applied to BRKGA
either. Meanwhile, Karimi-Mamaghan et al. (2022) defines eight possi-
ble uses of ML in metaheuristics: algorithm selection, fitness evaluation,
initialization, operator selection, learnable evolution model, neighbor
generation, parameter setting, and cooperation. The authors observe
that those methods have already been used in, at least, one GA.
However, currently only online parameter tuning (Chaves et al., 2018;
Schenekemberg et al., 2022) and operator selection (Xie et al., 2022)
were explored with BRKGA. Hybrids with machine learning methods
are, thus, a promising area for study. Lastly, the hybridization of
BRKGA and other single/multi-solution metaheuristic frameworks is
shown to improve solution quality and convergence, e.g. the use of
VND as local search or NSGA-II ranking methods in multi-objective
approaches. This practice can be extended to other algorithms in the
literature, such as GRASP, ILS, PSO, and others.

The exploitation of novel generalizations and hybrids with BRKGA
implies in a demand for new APIs. The current APIs must be updated to
reflect the new hybridization possibilities and state-of-the-art features,
while others must be developed in popular programming languages.
As Section 5 points out, the most recent complete API for BRKGA is
the BRKGA-MP-IPR framework presented by Andrade et al. (2021) in
C++, Julia, and Python. However, only the C++ version is updated to
reflect recent innovations. The Julia API has an older but functional
version of the BRKGA-MP-IPR framework, while the Python version
is incomplete. One possible future work is the further development of
the Python API to observe the additions to the framework. Possibly a
Python-based library could be developed for BRKGA. One can find im-
plementations of BRKGA in Java, Rust, F#, Matlab, and R, but those are
not stable versions and/or do not consider present-day inclusions to the
framework. The definition of a committee to oversee API development
for BRKGA is a possibility for the future of this metaheuristic.

The previous topics imply in novel applications for the framework.
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Section 3 indicates that BRKGA versatility is a key feature to its
performance, something that facilitates its use to diverse problems. One
should note that novel applications can lead to new research avenues
and novel hybridizations that, in turn, result in generalizations and new
APIs. Thus, the development of BRKGA has the potential to turn into a
virtuous cycle, where the algorithm evolves alongside the new research
areas.

8. Conclusion

This paper surveyed over 150 articles on the metaheuristic Biased
Random-Key Genetic Algorithm (BRKGA). The first applications of this
methodology were in the early 2000s (Ericsson et al., 2002; Gonçalves
& Almeida, 2002), but the framework was only formally defined in
2011 (Gonçalves & Resende, 2011a). This metaheuristic has been ex-
tensively used in several optimization problems since its conception,
proving to be reliable, efficient, and versatile.

This paper was guided by four research questions (RQ). The first RQ,
Which are the areas of application of BRKGA and how did they evolve?,
was answered with the discussion of the 34 categories of problems that
were studied with BRKGA since its first application. The prevalence of
scheduling, network configuration, and location problems is of note,
as those were some of the first studied with this metaheuristic (Buriol
et al., 2010; Ericsson et al., 2002; Gonçalves & Almeida, 2002). Those
are also problems in which BRKGA frequently performs the same or
better with respect to solution quality than other approaches.

The second research question, Which are the types of hybridization
involving BRKGA and how did they evolve?, was the focus of the second
part of this survey, which indicates that hybrid BRKGA strategies
are common, especially alongside local search heuristics. The use of
hybridization is frequently concerned with increases in computational
effort, as BRKGA is already a computational-heavy heuristic. The third
part of this review was guided by the third RQ, How was the BRKGA
framework modified since its inception?, and points out that the new
features added to the framework usually focus on increasing population
diversity to prevent premature convergence.

The focus of the fourth RQ, What are the opportunities for the growth
of the BRKGA framework?, are the possible challenges and growth
opportunities for this method. We observe that populational diversity
and perturbation procedures are essential to increase performance and
that there are opportunities in the areas of multi-objective problems,
problems with uncertainty, hybridizations, and the development of
APIs.

To sum up, this study presents an extensive overview of the current
corpus of literature regarding BRKGA that may be useful for any
researcher aiming to study this metaheuristic. Possible avenues to
broaden the scope of this study are the addition of other databases, such
as Web of Science and arXiv, and the inclusion of thesis, dissertations,
conference papers, and non-peer-reviewed material such as technical
reports and preprints.
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Fig. A.1. Number of papers per year and problem. Problem type ‘‘other’’ refers to problems studied in two or less articles.

Fig. A.2. Number of papers per problem. Problem type ‘‘other’’ refers to problems studied in two or less articles.
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Fig. A.3. Number of papers per year and hybrid.

Fig. A.4. Number of papers per hybrid.
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